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NOMENCLATURE

Text

A coefficient matrix

al...a5 coefficients

c0 coefficient matrix of dependent variable in the finite-volume discretization
cl coefficient matrix in x direction of the differential term in finite-volume equation
c2 coefficient matrix in y direction of the differential term in finite-volume equatlon
E total energy density of gas mixture, ergs/cm’
f source term vector

H height, cm

J molecular diffusive flux, gmole/cm’sec

L length, cm

P pressure, dynes/cm2

oP change in pressure, dynes/cm?

q conductive heat flux, ergs/cm®sec

r,s residual vectors

T temperature, K

t time, sec.

u dependent variable scaler

u dependent variable vector

v velocity vector

W rate of combustion, gmole/cm’sec

X horizontal axial coordinate

y vertical axial coordinate

Greek Symbols

p gas density, kg/m’

€ energy density rate, ergs/cm’-sec.

Y specific heat ratio

T stress tensor

AH, heat of combustion

o) implicitness parameter

Subscrlpts

i index in x-direction

j index in y-direction

k k th specie

r radiative component

Superscripts

n new time step

0 previous time step

v



NUMERICAL SIMULATION OF SOLID COMBUSTION
WITH A ROBUST CONJUGATE-GRADIENT SOLUTION FOR PRESSURE

1. INTRODUCTION

Solid materials, such as the insulation on bulkheads and doors in a ship, often form
boundary layer flames due to no-slip and pyrolysis of the solid. The burning rate plays a key
role in the evaluation of fire threat and depends on both the fluid dynamics near the surface and
the intrinsic burning characteristics of the solid phase. A numerical model was developed by
Ananth et al. [1-4] to describe temperature and local burning rate distributions along the length
of a polymer (poly methyl methacrylate, PMMA) slab. Time dependent solutions of full
Navier-Stokes equations are obtained by using Barely Implicit Correction to Flux Corrected
Transport (BIC-FCT) algorithms for combustion of a PMMA plate under forced flow of air past
the plate. A multi-variable fixed point (MVFP) iterative method is developed to describe the
coupling between the gas and the solid phases.

In BIC-FCT schemes, an implicit elliptic partial differential equation for pressure arises
from the momentum and energy equations as described by G. Patnaik et al. [5]. In the simulation
of solid combustion, the elliptic equation must be solved at every MVFP iteration and at each
time step. Since the solution of the pressure equation is of significant computational cost, a
robust method is needed. The objective of this work is to implement a bi-conjugate gradient
method for the solution of the pressure equation and predict the burning rate distributions along
the polymer slab. We will show that a bi-conjugate gradient method (Bi-CGSTAB) is
computationally reliable, efficient, and accurate for slow flow past the solid plate by comparing
it with a multigrid method (MGRID), which is used currently. Unlike MGRID, Bi-CGSTAB is
simple, transparent, easier to implement with direct accuracy control, and can port among
different machines (e.g., SGI unix work station and the SunSPARC cluster).

To understand how the Bi-CGSTAB method works, it is tested using a simple problem,
which has an analytical solution prior to the simulation of the combustion problem. Both
MGRID and Bi-CGSTAB methods are applied to the solid combustion problem, and the
solutions and CPU times compared at steady state (12,000 time steps). The method of Bi-
CGSTAB shows favorable features in convergence and accuracy.

2. LITERATURE REVIEW
Numerical modeling of combustion problems often involves the solution of elliptic
partial differential equations subjected to complicated boundaries and interfaces. The general

form of an elliptic equation is given by

aju+a; VeaVu+ Vau=as 2.1)
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with boundary conditions given by

b1u+b2@ =b3. (22)
on

Here u is a dependent variable, a; to as and b; to bs are coefficients, and n representing normal to
the boundary can be x or y.

In general, the elliptic partial differential equation is discretized by a finite volume
method. This results in a set of linear algebraic equations, Au=f, where A is the coefficient
matrix and u and f are the vectors containing the dependent variables and source terms,
respectively. Since the elliptic partial differential equation is linear, it leads to a linear set of
algebraic equations, which may be solved using an iterative algorithm. However, in time
dependent formulations, such as BIC-FCT, the coefficients in the elliptic equation are time-
dependent. Therefore, the coefficients contained in the matrix A vary with time. As combustion
progresses in time, the coefficient matrix may rapidly fill up and become non-symmetric or non-
triangular. In these situations, common elliptic solvers, such as a direct method, and the iterative
technique ADI (Alternating-Direction Implicit) method, become expensive [6]. In recent years,
multigrid methods and conjugate gradient methods have been recognized as feasible methods to
solve such elliptic problems to achieve the required accuracy and efficiency.

The simplest of the conjugate gradient methods is based on the idea of minimizing the
function

S(u) =(1/2) ue(Au) -feu 2.3)
The function S is minimized when the gradient is zero as shown below
VS=Au-f=0 2.9)

The iterative method uses successive approximations to reach the final solution. Each
successive iteration searches for a correction to the previous iteration in a direction normal to the
subspace of the most recent approximation, until the entire vector space is searched. The
methods work well for those slow flows problems, wherein viscous or diffusive effects are
dominant. A typical conjugate gradients method for solving elliptic equations is Conjugate
Gradients-Squared method (CG-S) of Sonneveld, et al.[7]. In this method, the residual vectors r
=Au-f generated by the method satisfy a 3-term recurrence relatlon The method has the feature
of fast convergence. - ‘

Bi-CG methods are developed based on CG-S and do not directly relate to the function
minimization concept. These methods have two 3-term recurrence relations for better stability.
It is found that CG-S based methods may lead to a rather irregular convergence behavior and in
some cases rounding errors can even result in severe cancellation effects in the solution. Van
Der Vorst [8] proposed a variant of Bi-CG, named Bi-CGSTAB, to eliminate these negative
effects. Van Der Vorst showed that the Bi-CGSTAB provides fast and smoothly convergence



without giving up the attractive speed of convergence of CG-S. G. Patnaik [9] has recently
implemented the Bi-CGSTAB method to study 3-dimensional premixed hydrogen-air flames.
He also successfully parallelized the code to run on Origin2000 machine. The present work
implements the Bi-CGSTAB to the solid combustion problem and is an extension of the work of
G. Patnaik [9].

We have been using a multigrid method (MGRID) developed by DeVore [10] to solve
the pressure equation. This method for solving the elliptic boundary-value problem was
originally found by Douglas [11]. Subsequently, DeVore [10] converted the method to
vectorized form for higher speed computations. Basically, the method uses the solution obtained
from a sequence of smaller spaces to approximate the desired solution in the largest space. Since
the smaller spaces have geometrically fewer unknowns, they require less computational effort to
yield a solution than does the largest space. The method combines direct and iterative methods.
(It can make use of coarse grids with mesh spacing for two fine-grid points, say 2h as two levels,
4h, 8h, or more levels.) The approximate solution for the fine-grid can be obtained by a direct
method, such as Gaussian elimination. In order to improve the approximated solution on the fine
grids, the method does a small number of relaxation iterations on the solution obtained from the
first approximation. This iteration process is based on the residual vector, and then the desired
values from the fine grid are projected onto.the coarse grid. This process is a correction process,
or a cycle, and can be done by several iteration steps. According to the report from DeVore [10],
a level-4 and cycle-2 algorithm might be a good choice. However, he recommended that the best
choices for many of these options, in general, depend on the properties of the coefficients in the
equation, the number of spatial dimensions, the number of unknowns, and the accuracy required
in the solution. Thus, the method is complex and less transparent. Furthermore, for the solid
combustion problem, the results reported here will show that it is also time consuming, due to the
intergrid transfers and recursive cycling.

3. MATHEMATICAL FORMULATION

We consider air flow past a PMMA plate, which includes a non-burning leading plate and
a post flame plate as shown in Figure 1. The plate is ignited near the entire surface by adding
external energy for a short time. The fuel vapor generated at the surface mixes with the
incoming air by convection and diffusion and undergoes combustion. The development of a
boundary layer diffusion flame is described by the time-dependent mass, momentum, total
energy, and specie equations, which are given by

continuity

dp=-Vepy, NERY
ot
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Figure 1 Boundary Layer Combustion of a Solid Fuel Plate
momentum

Opv=—Vepvv-VP+Ver,
ot

energy

OE=—Ve(E+P)v+tVe(ver1)+VeqtWAH +q,,

t

(o))

and specie

0C=—-V evCytV e Ji+Wy |
ot

where the total energy density E is

(3-2)

(3.3)

(3.4)



E=g+1 pv? . (3.5
2

The pressure P and internal energy density & are related by the equation of state, which is given
by

P=(y-1)e. (3.6)

Here p is the gas density, v is the velocity vector,t is the stress tensor, q is conductive heat flux
Wi is the rate of combustion of specie k, AH, is the heat of combustion, g; is the radiative heat
flux, Cxis the specie concentration, Jy is the molecular diffusive flux, and y is the ratio of specific
heats.

3

The convective, diffusive, and reaction parts of the equations (3.1) to (3.6) are computed
separately and are combined using time step-splitting [12]. The pressure term is included in the
convection algorithms, which are subject to the Courant condition in an explicit formulation.
The convective part of the equations (3.2) and (3.3) are given by

opv=—Vepvv-VP, 3.7)
ot

and
OE=-Ve(E+P)v, (3.8)
ot

To solve this time-dependent system of convection equations numerically, Casulli and
Greenspan [13] showed that it is not necessary to treat every term in a finite-difference algorithm
implicitly to avoid the time step constraint imposed by the Courant condition. They showed that
only those terms containing the pressure in equation (3.7) and the velocity in equation (3.8) must
be treated implicitly. Patnaik et al. [5] applied the concepts of Casulli and Greenspan [13] to
obtain solutions for pressure and the velocity in by BIC-FCT formulation. An implicitness
parameter, o, is introduced and it can be vary the degree of implicitness of the algorithm. In
general, we can have 0.5 < © < 1, where the implicit terms are centered in time for ® = 0.5. For
@ < 0.5, the method is found to be unstable for sufficiently large time steps.

The algorithm has two stages. One stage is an explicit predictor that determines the provisional
value p and v in the following two equations,

p—p’=-Vep’y° (3.9)
At

and
0V —p°V=-Vep’v°v°-VP°, (3.10)
At




The bar denotes predictor values at the new time step, and the superscript o and n are used to
denote the values at old time step and new time, respectively, in the correction. The implicit
forms of momentum and energy equations are

p'v" —p°v?=-Vep°’v’v°-Ve [wP" +(1=-w)P°] 3.11)
At
and
E" —E°=-Ve(E°+P°)[ov" +(1-0)v°]. (3.12)
At

Since o =1, the algorithm is completely implicit and reverts to the original equations as
equations (3.7) and (3.8).

The change in pressure, 8P, is defined as
8P =0 (P"-P°). (3.13)

Then the correction equation for momentum can be obtained in terms of 8P by subtracting
equation (3.10) from (3.11),

P"V'-p Vv =— Vo (P"=P°) = —VP. (3.14)
At -

By rearranging equation ( 3.14) and letting p" = g—), the new velocity is obtained as

Vi=—At V&P+ v, (3.15)
p

then a correction equation for energy using the equation of state is obtained as

g'= 8P +¢° (3.16)
-Do

where the o factor appears from the definition of 8P from equation (3.13). 8P can be found by
substituting equations (3.15), (3.16), and (3.5) into equation (3.12) to obtain

pv?: —p°v?*+ P = At Ve (E°+P° ) V &P
2 At (y-Do At p
— o Vo(E°+P° v— (1-0) Ve( E°+P% v° . (3.17)



Note that the kinetic energy change is included explicitly. For convenience, we define the
quantity E,

E-E’=-Ve(E°+P) [ v+(l-0) V] (3.18)
At

so that equation (3.17) can be rewritten as

8P -0AtVe(E°+P°)VeP= E-F°— p v —o°v*
-(-Do At p At 2At . (3.19)

By dividing — o At from both sides of Eq. (3.19), then

5P +Ve(E°+P° )VSP= E-E°+ pv? —p°y*
- (;=Do’ AP p — o AP 20 AP (3.20)

The barely implicit correction (BIC) is carried out in three stages. In the first stage,
equations (3.9), (3.10), and (3.18) are integrated with any one-step explicit method. In the
second stage, the pressure correction equation (3.20) is solved by a numerical elliptic solver. In
the last stage, equations (3.15) and (3.16) are used to obtain the values of momentum and energy
at the new time-step. These values of the momentum and energy are then added to the
contributions from the diffusive, reactive, and radiative parts of the equations (3.2) and (3.3) to
obtain final values of the energy and momentum.

Our focus here is to obtain the solution of equation (3.20) for 8P, which is of the form
given by equation (2.1). The right hand side of equation (3.20) is evaluated explicitly.
Therefore, the right hand side of equation (3.20) is known and the only unknown is 8P. Clearly
equation (3.20) is linear and can be solved by Bi-CGSTAB iterative method.

4. NUMERICAL FORMULATION

In order to solve 8P numerically, equation (3.20) can be written in the form of equatibn
(2.3) by recognizing

u=4P ' 4.1)
where '
a=__-1_ 4.2)
(y—l)mz’ At
a=1, 4.3)




a;= E°+P° (4.4)

P )
a4=0 N (45)

and as=E—E°+ p v? —p°v® (4.6)
—0 At 2 eAf

Therefore, a;..as are known and 8P is the unknown. In general, at a fixed time, the coefficients
aj...as and variable 8P vary with position (x and y). Next, a set of algebraic equations are
derived from equations (4.1) to (4.6) following the procedure outlined by G. Patnaik [9] for
premixed flames.

4.1  Algebraic Equations in Matrix Form

Equation (4.1) is discretized based on a two dimensional finite volume grid. A typical
cell is shown in Figure 2. Here, the grid contains nx and ny cells in x and y directions,
respectively. Also, i and j are cell numbers in x and y directions, respectively.

The descritized equation for a typical cell (i,j) is given by

Co(Lu(ij)+ [er(iudi-1,)) -ci(i+1,j)uij] e+ Liuli+1,j)- ci(ij)ul,]
+ [ea(ij)uij-1) -co(Lj+ Du(ij] + [eaj+Duij+1)-ca(ijudi,j) 1= (i)
for i=1,nx and j=1,ny 4.7)

The values of the coefficients and the variables at cell numbers 0, (nx+1), and (ny+1)
correspond to the guard cells and are evaluated from the boundary conditions. Inside the domain
they are given by the following equations. The first term (self-term) coefficients of equation
(4.7) are given by

co(L.)=Ax(D)Ay()ai(i,))- (4.8)
The forcing terms on the right hand side of equation (4.7) are given by

f(i.j) =Ax(1)Ay(as(i,). (4.9)



¢,(1,)) ¢,(i+1,])

u(i,j+1)
¢,(ii+1)~
CO(iaj)
u(i-1) u(i,)) u(i+l;)
¢,(1,))
u(i,j-1)

Figure2 A Typical Cell for Bi-CGSTAB

The x coefﬁcienfs in equation (4.7)‘ are given by

ci(i,))= 0.5(as(i-1,j)+a3(1,)))2AyG)/( Ax(i-1) J+Ax(i)). (4.10)

The y coefficientsin equation (4.7) are given by

c2(1)= 0.5(as(i,j-1)+as(1,))2Ax(1)/( Ay(G-1) J+Ay())- 4.11)

If the coefficient matrix a; is not an identity matrix, then c;(i,j) and c,(i,j) become
c1(1,)) = ax(i,j)ei(i), ‘ N (3 )

c2(1,)) = ax(i,j)c2(1,j)- (4.13)

and

Therefore, equation (4.7) can be rewritten as

[KGDIG) + cili+Liuli+ 1)+ eii)ul-1)) tea(iju(ij-1) +eolij+Duj+1) = (i)




for i=1,nx and j=1,ny,
(4.14)
where

K=[eo(i,j)-1(i,j)-c1(i+1,j)-ca(ij)-co(i,j+1)] - (4.15)

Equations (4.14) and (4.15) represent a set of linear algebraic equations of the form
Au=f, (4.16)

which are solved by an iterative method as discussed in section 4.2.

4.2  TIterative Solution

The Bi-CGSTAB algorithms developed by Van Der Vorst [8] are shown in Table 1.
Initially, an arbitrary vector r is determined, say by r = ro where ryis an initial residual matrix.
The values of ry are calculated from r=f ~Au,. Then the iteration loop process starts (I=1,2,3..)).
Within each loop, Bi-CGSTAB carries out two updates to the residual r of the current solution wu.
The two updated residuals are calculated from s = r;; - av; and r; =s-o; t. This explains Bi- as
the name of the algorithm. If the residual s is small enough, the second updated residual will be
skipped. The iteration process is continued until a pre-specified tolerance condition is satisfied.

Preconditioning or reformulation of the equation (4.14) is often useful in speeding up the
convergence. Van Der Vorst suggested the following preconditioning of the equations

r=

{u(i,j) + K[ c1+1,juli+1j)+ c1(iui-1,0) +2(i,iud,j-1) +e2(ij+ Du(i,ji+ DK f(i,j),
(4.17)

where

K'=1/ [c0(i,j)-c1(i,j)-c1(i+1,5)-c2(i,§)-c2(i,j+1)]. (4.18)

If the magnitude of K is less than the magnitude of K\, then the magnitude of residual
vector is reduced and the iteration process is faster, because the initial guess of u is closer to the

- solution. The iteration process with a preconditioned algorithm will not change the original

system. However, it changes r, where r is an arbitrary vector, e.g., r =y, and r,=f-Ax, for initial
guess.

- The convergence criterion in Bi-CGSTAB is determined by the square root of the
residual, i.e., ¢ = square root of (ro, 1), where (rp. ri.1) 1s a dot product of two residual vectors
from sequential steps in the calculation. The tolerance is selected based on this convergence
criterion and is specified directly. In the computer code, a parameter named norm is introduced
outside iteration loop, and norm = 1/square root of (f,f). '
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Initial guess w1 =f—Awy, Initial guess vy =1 =f—Awy,

Anabitrary vector r =1, Anarbitrary vector ¥ =T

p=o=n=1 p=o=w=1

VO:Ib:O vo=p)=0

For=123,. . (start iteration loops) Fore123. ..

p=@ i) p={11)

B=(/p1) ol B=@/p1)(clar)

Pt - Vi) PR @0 Vi)
Sobve y fromKy=p

VAR iy (YZPK])

Oﬁ)s/ 1o,V op/(Io,v)

§73.1 -0V (update residual) ST1-0;
Sohe y flomKz=s

t=As t=Az (zsK')

a=(tsytt) a=K'tK's)K'tK'1)

u=u,; toptas u=u,; toprias

Hu is accurate enough then quit Ifu is accurate enough then quit

L =5 t (update residual) LSyt

end end

Table 1 Bi-CGSTAB Algorithms with and without Pre-conditioning [8]

The convergence criterion is set as the product of ¢ and norm. This could help set a
suitable criterion to avoid unrealistic tolerance, since usually ¢ is a very small number if the
program converges. However, if the source term f is zero, norm cannot be used.

As discussed earlier, the values at the guard cells, which are on the boundaries of the
domain, appear explicitly in the governing algebraic equations (4.14). In Bi-CGSTAB method,
the boundary conditions are specified at each iteration step when the updated residual is
calculated. For the solid combustion problem, the pressure gradient is set to zero at all
boundaries except the outflow. At the downstream of the fuel plate, we set pressure to be
atmospheric, i.e., 5P=0. In BIC-FCT formulation, all of the boundary conditions are
implemented at the interface of the guard cell and the first cell in the domain. Therefore, the
Dirilecht boundary condition is implemented by setting the values of the guard cells as a
reflection of the internal cell values, 5P(nx+1,j)= 6Pg = -8P (nx,j).

11




5. NUMERICAL TESTS

The solid combustion problem involves both pressure gradient and pressure boundary
conditions. For these boundary conditions, which may affect accuracy and convergence, the
computer code is tested by comparing the numerical results against analytical solutions for a test
problem.

Steady temperature of the electric heater (Arpact [14]) can be described by the following
equations on a rectangular domain of size 2Lx2H as shown in Figures 3a and 3b.

Ay

v y
A
u=0
u=0 | =0
> du/dy=0 u=0
(0,0) X
P
(0,0) X
du/dy=0
u=0

Figure 3b  Computational Domain for

Figure 3a  Heat Transfer from a Square
the Test Problem

Heater

The temperature field is described by the following equation:

Fu + JFu +1=0. (5.1
ax* y

The boundary conditions are

ou(0,y)=0, du(x,0=0,u(L,y)=0,u(x,H)=0. (5.2a,b,c,d)
ox dy

Equation (5.1) is discretized on a 100x100 cell uniform grid. The resulting equations (4.17) are
solved by Bi-CGSTAB for the temperature field, u, and are shown in Table 2.

12



Analytical Numerical (100x100 cells), tolerance=1.E-3

Case 1 Case 2
X y | uxy) u(x,y) Error %error!  u(x,y)=0. Error Yeerror
0.1 0.1]0.28972| 0.28913 5.90E-04 0.2 0.29202 | 2.30E-03 0.79
03] 0.1]0.26958 | 0.26852 1.06E-03 039 | 027143 | 1.85E-03 0.69
05| 0.1]0.22754 | 0.22598 1.56E-03 069 | 0.22893 | 1.39E-03 0.61
0.7 1 0.1]0.16012| 0.15796 2.16E-03 1.35 | 0.16099 | 8.70E-04 0.54
09| 0.1 (0.06227| 0.05935 2.92E-03 469 | 0.06256 | 2.90E-04 047
0.1 0.3]0.26957 || 0.26852 1.05E-03 039 | 027143 | 1.86E-03 0.69
03| 0.3]|0.25118|| 0.24974 1.44E-03 057 | 025264 | 1.46E-03 0.58
05| 03021264 0.21080 1.84E-03 087 | 021370 | 1.06E-03 0.50
0.7 | 0.3 ]0.15035| 0.14806 2.29E-03 1.52 | 0.15100 | 6.50E-04 043
0.9 | 0.3|0.05888| 0.05601 2.87E-03 487 | 0.05907 | 1.90E-04 0.32
0.1105]0.22753|| 0.22598 1.55E-03 0.68 | 0.22803 | 1.40E-03 0.62
03] 05)0.21263| 0.21080 1.83E-03 0.86 | 021370 | 1.07E-03 0.50
05| 05|0.18116| 0.17909 2.07E-03 114 | 0.18192 | 7.60E-04 0.42
0.7105]0.12949|| 0.12719 2.30E-03 1.78 | 0.12993 | 4.40E-04 0.34
09| 05(0.05149| 0.04891 2.58E-03 5.01 0.05165 | 1.60E-04 0.31
0.1{0.7]0.16011|| 0.15796 2.15E-03 1.34 | 0.16099 | 8.80E-04 0.55
03| 0.7 |0.15034 || 0.14806 2.28E-03 1.52 0.15100 | 6.60E-04 0.44
051 07012948 0.12719 2.29E-03 1.77 | 012993 | 4.50E-04 0.35
0.7 | 0.7 | 0.09444 || 0.09222 2.22E-03 235 | 0.09468 | 2.40E-04 0.25
09| 0.7 {0.03892| 0.03677 2.15E-03 5.52 0.03897 | 5.00E-05 0.13
0.1]09|0.06226 ] 0.05935 2.91E-03 4.67 0.06256 | 3.00E-04 0.48
0.3 09]0.05885| 0.05601 2.84E-03 483 | 0.05907 | 2.20E-04 0.37
0.5 09| 0.0515 0.04891 2.59E-03 503 | 0.05165 | 1.50E-04 0.29
0.7 { 0.9 | 0.0389 0.03677 2.13E-03 548 | 0.03897 | 7.00E-05 0.18
091 09]0.01754| 0.01608 1.46E-03 8.32 0.01751 | -3.00E-05 0.17

Numerical treatments for zero boundary conditions:
Case 1: u(nx+1,j) = -u(nx.j)
u(i,ny+1)= -u(i,ny)

Case 2: u(nx+1,j)=0.
u(i, ny+1) = 0.

Table 2

Comparision of Bi-CGSTAB Computations with the Exact
Analytical Solution for the Square Heater
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Also shown in Table 2 is the analytical solution, which is represented as a series (n=6) given by

u(x,y)/ L= 0.5%[1-x/L"]-2Z  (-1)"(cosh A,y ) cos(Aax)  (5.3)
"0 (A L)* coshA, h

where A L=(2n+1)n/2, n=1,2,..6, and n represents the number of terms in the series. The
numerical solution was obtained for two different boundary conditions. Case 1 uses the
reflective boundary conditions. In Case 2 the guard cell values are directly set to zero. Clearly,
the numerical solution is generally within few percent of the analytical solution with the
reflective boundary conditions. Solutions for case 2, however, have almost a factor of ten less
error near the domain corners than the those for case 1. This suggests that the exact
implementation of the boundary conditions may affect the accuracy of the solution near the
corners of the domain.

6. RESULTS AND DISCUSSION

For PMMA combustion, the rectangular domain shown in Figure 1 is descritized by
192x144 finite volume cells. The cells are packed closely near the leading edge region of the
PMMA plate and are stretched with distance from the leading edge. The smallest cells are 0.2
mm size. The gases are ignited for the first 2000 time steps (time step=1e-05 sec). At each time
step, solution of equation (3.20) and the final solutions of equations (3.1) to (3.6) are obtained by
time step splitting.

The boundary conditions at the PMMA surface describe the no-slip condition, the
interfacial transport of mass, momentum and energy, and pyrolysis kinetics, all of which are
given elsewhere [1-4]. The interfacial temperature; concentrations of the species, and fuel
ejection rate due to pyrolysis are unknowns and are determined as a part of the solution. At each
time step, a multi-variable fixed point iterative (MVFP) method is used to generate new values of
the interfacial quantities. The new interfacial values are used as boundary conditions and
equations (3.20), and (3.1) to (3.6) are re-solved. After convergence is obtained for the
interfacial quantities, the computations are performed for the next time step. These iterations are
important since they can significantly affect the local burning rates of PMMA. Computations
were performed on SGI (Silicon Graphics) work station equipped with 300 MHZ, R10000, MIPS
processor.

Figure 4 shows the solutions of equation (3.20) for pressure using Bi-CGSTAB. They
correspond to steady state (12000 time steps of 5e-05 sec). They‘show a small raise in 8P near
the leading edge of the PMMA plate (x=1.7 cm). Combustion rates are highest near this region,
where fresh air comes in contact with the fuel vapor generated at the PMMA surface. The
combustion rates decrease sharply with the distance from the leading edge region and result in a
sharp decrease in 8P as exhibited by Figure 4. A much higher raise in 8P was found during the
ignition period and it falls steadily with time.
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Inlet air velocity, U =84 cm/sec DP
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Figure 4  Solutions of the Pressure Equation using Bi-CGSTAB for
PMMA Combustion

Figures 5 and 6 show the axial and vertical velocity components obtained from equation (3.16).
Clearly, the axial velocity decreases as the gases approach the intense combustion region near
the leading edge of the PMMA plate and accelerate downstream with distance x. The axial
velocity is small near the surface due to no-slip, reaches peak value just above the flame, and
approaches free stream value (84.0 cm/sec) far from the surface in y-direction. The vertical
component of the velocity shows a large increase near the leading edge where 8P is the largest.
The vertical velocity of the fuel vapors due to PMMA pyrolysis is much smaller that the peak
value shown in Figure 6. Together these results show that combustion near the leading edge
region diverts the air flow upward away from the PMMA surface. This may have important
implications on how a suppression agent such as water mist might distribute itself near this
region of intense combustion.
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Figure 5 Axial Velocity Contours for PMMA Combustion Obtained
by using Bi-CGSTAB
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Figure 6 Vertical Velocity Contours Obtained by using Bi-CGSTAB

At the PMMA surface the local regression rate is directly proportional to the local heat feed back
from the flame to the surface. The heat transport drives the PMMA pyrolysis that turns the solid
into fuel vapor. Solutions of the full Navier-Stokes equations are used to evaluate the heat feed
back. The local regression rate along the length of the PMMA plate is shown in Figure 7. The
regression rate is highest near the leading edge and decreases sharply within a short distance
from the leading edge. The sharp decrease in the regression rate is due to the boundary layer
structure of the flame. The boundary layer thickness increases sharply with distance from the
leading edge and results in a heat feed back profile that decreases with the distance.
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Figure 7  Regression Rate Profile for the Boundary Layer Combustion of PMMA

Instead of using Bi-CGSTAB, computations were also performed using the multi-grid
method (MGRID, with level 4 and cycle 2) for identical inputs, which were discussed above.
Therefore, all of the computations are identical except for the solution of the pressure equation
(3.20). The results are summarized in the second and third columns of Table 3. The leading
edge of the PMMA plate is located at I=41 cell in the computational domain. Table 3 shows that
the temperature (K), pressure (dynes/cm?), and local burning rates (gm/cm’sec) are nearly the
same for both methods near the leading edge (I=42, j=1) at steady state (12001 time steps). The
maximum flame temperatures, which occur inside the domain (i=64,j=10), are also identical for
both the methods. Table 3 also shows the values of pressure at the inlet (i=0), where the pressure
gradient is set to zero (ddP/dx=0), and at the outlet (i=193), where the pressure is set to
atmospheric (6P=0). The computations with Bi-CGSTAB appear to satisfy the exit boundary
condition better than those with MGRID especially during the transient (6001 time step).
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CPUtime(sec) | Megrid | Bi-OGSTAB | Bi-CGSTAB
tolerance=l.e-3 | tolerance=1.e-5
Inplicit 9.5233¢-5 34231e5 | 7.6190e-5
Results
At 12001™ step
T(42,1) 1010 1010 1010
T(64,10) 1910 1910 1910
Sp(42,1) 221 245 25.1
8p(64,10) 123 132 13.6
1,(42,1) 53.8¢-4 54.50-4 54.5¢-4
Boundary cells
Sp(1,1) dynes/cnt
At first step 3.29 3.29 3.29
2001" step 4260 3120 4700
4001™ step 7.83 5.14 5.40
6001th step 7.27 4,95 5.39
8001™ step 525 5.34 538
10001th step 531 5.63 543
12001th step 5.17 523 541
Sp(192,1) dynes/cnt
At first step 3.29 3.29 3.29
2001" step 66.1 57.0 82.1
4001" step -116 1.25 -11.4
6001th step -146 -0.021 0.704
8001" step -0.213 0.189 0.846
10001th step 0.780 0.091 0.281
12001th step 2.03 1.02 0.588

Table 3 Comparision of Bi-CGSTAB with MGRID Res&lts for
PMMA Combustion

Computer time (clock time) profiling was also performed for both the methods to
compare their efficiency. These are shown as seconds per time step for each stage of the
algorithm. The computation time for the solution of the pressure equation (3.20) is shown as
“Implicit” in Table 3. Clearly, solving the pressure equation is significantly faster (factor of 2.5)
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with MGRID. The number of MVFP iterations was found to be roughly the same for both the
methods.

Table 3 also shows the computations with two different tolerance limits for the Bi-
CGSTAB iterations. Increased tolerance affected the pressure slightly but did not significantly
improve the temperature and burning rates. The computation time, however, increased
significantly with the increased tolerance as one would expect.

7. CONCLUSIONS

Simulation of solid combustion problems involve an elliptic equation for pressure, which
must be solved multiple times at each time step in order to obtain local burning rate profiles
accurately. A robust conjugate gradient method (Bi-CGSTAB) has been implemented for the
solution of PMMA combustion. The conjugate gradient method is shown to provide superior
performance in computation time over a multi-grid method (MGRID) without any loss in the
accuracy for the temperature, burning rate, and pressure with tolerance limit set at 1e-03.
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